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Abstract

Herein the electromagnetic scattering is determined using the Finite Element Method. In particular
the radar cross section of the scatterer is estimated. Comparison between the Finite Element Method
(FEM), Method of Moments (MoM) and the method of Physical Optics (PO) is made in one numerical
example. In another numerical example, the convergence rate is compared using pure h-refinement,
p-enrichment and with a priori hp-adaptive refinements. The gain using the hp-adaptive approach is
significant since an exponential convergence may be obtained.

1 Introduction

Accurate calculations of the electromagnetic scattering from objects is of great importance in the design
of low observable, so-called, stealth vehicles. External scattering from electrically large convex objects
is usually estimated by means of high frequency methods, such as the method of physical optics. So
called numerically exact methods, such as method of moments, finite difference and/or the finite element
method are preferable whenever it is possible.

Here the electromagnetic scattering, expressed in terms of radar cross section (RCS), is calculated
using an hp-adaptive finite element method. The hp-adaptive method, where the elements have locally
variable order of approximation p and element size h, is very suitable for modeling singularities such
as those resulting from irregular geometries. Also, the numerical dispersion error, e.g. in resonating
cavities, may be reduced using the hp-method. The ability to model singularities, is one of the largest
advantages for using the hp-method, since the maximal convergence may be retained. The hp-adaptive
FE code used here, called EM3D, is a derivative of a general package for hp-adaptive FE discretizations
called 3Dhp90, see [1]. EM3D has extensively been applied in cavity problems, see e.g. [2]; herein focus
will be made solely on the scattering from a compact body in the free space.

2 Problem statement

Consider the following formulation of the time-harmonic Maxwell’s equations in terms of the scattered
electric field E defined as E := Etot−Einc, where Etot is the total electric field and Einc is the incident
electric field. Let Ω be a open, bounded domain Ω ⊂ R3, with boundary Γ surrounded by the free space
Ω+ := R3\Ω̄ . Let also the exterior domain Ω+ be truncated by introducing an artificial, closed boundary
Γ0, and denote the part of the reduced exterior by Ω+

0 and the enclosed remaining part of Ω+ by Ω0, i.e.
Ω+ := Ω0 ∪ Ω+

0 . Then the problem is to find the scattered electric field E(x), x ∈ Ω̄ ∪ Ω0, such that

∇×
(

1
µr

∇×E

)
− k2

0 ε̂rE = −jk0Z0J
imp (1)

is satisfied. In the above ε̂r := εr(1−j σ
ωε) and µr, εr and σ are relative permittivity, relative permeability

and conductivity respectively; and ω is the circular frequency. Also, in the above equation k0 := ω
√

ε0µ0
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is the wavenumber in free space, and Z0 =
√

µ0/ε0 is the intrinsic impedance of free space. In Eq. (1)
J imp is the impressed current defined as

J imp :=
(

ε̂r − 1
µr

)
jωε0E

inc, Einc(x) := E0 p e−j k0 d·x. (2)

In the above E0 is the amplitude, p is a unit vector identifying the polarization of the incident field, and
d is the direction of propagation.

At a perfect electrical conductor (PEC) surface Γ the non-homogeneous Dirichlet boundary condition

n×E = −n×Einc, (3)

is imposed; n = n(x) is the unit vector normal to Γ at a point x. At material interfaces the following
continuity conditions are applied

n× [[E]] = −n× [[
Einc

]]
, n×

[[
1
µr
∇×E

]]
= −n×

[[
1
µr

]]
∇×Einc, (4)

where [[•]] denotes the jump in the argument across the interface.
Energy conservation require the resultant scattered field E to decline according to Silver-Müller

radiation condition
lim

r→∞ r [∇×E + jk0 er ×E] = 0, (5)

as r → ∞, where r is the distance between the center of the object and the actual observation point.
Infinite Elements (IE) are used here (in the domain Ω+

0 ) to implement Eq. (5).
The variational formulation of the above strong formulation is obtained by multiplying Eq. (1) by

a vector test function F ∈ W∗, integrating over the domain Ω, integrating by parts and using Eq. (4).
The corresponding weak formulation can be stated as follows. Find E ∈ W such that B(E, F ) = L(F ),
where the sesquilinear and antilinear functionals B and L are defined as

B(E,F ) =
∑

V ={Ω,Ω0,Ω+
0 }

{∫

V

1
µr

(∇×E) · (∇× F̄ ) dV − k2
0

∫

V
ε̂rE · F̄ dV

}
, (6)

L(F ) = −jk0Z0

∑

V ={Ω,Ω0,Ω+
0 }

∫

V
J imp · F̄ dV −

∫

Γ
n× (∇×Einc)

[[
1
µr

]]
· F̄ dS, (7)

∀F ∈ W∗ satisfying the homogeneous equivalents of Eqs. (3) and (4). The bar above the test function,
F̄ , denotes the complex conjugate. Here W is the space of trial functions defined as

W := {F ∈ L2
r−1 : ∇× F ∈ L2

r−1 ,er × (∇× F )− jk0E ∈ L2}, (8)

and W∗ is the space of test functions defined as

W∗ := {F ∈ L2
r : ∇× F ∈ L2

r, er × (∇× F )− jk0E ∈ L2}, (9)

where
L2

r±1 := {F : Fr ∈ L2(Ω ∪ Ω0 ∪ Ω+
0 ), r±1F t ∈ L2(Ω ∪ Ω0 ∪ Ω+

0 )}, (10)

with Fr and F t being the radial and transversal (tangential to a sphere centered at the origin) components
of the field F . Note that a necessary condition for a FE-discretization of the electric field E in order to



stay in the space W is that only the tangential component of E must be continuous across inter-element
boundaries, i.e. W ∈ Hcurl(Ω). The radar cross section σ is defined as

σ := lim
r→∞ 4πr2 |E∞(x) · pobs|2

‖Einc(x)‖2
, (11)

where E∞(x) is the scattered electric far-field ,and pobs is the observer polarization. The scattered
electric far-field may be obtained from the near-field by the following transformation

E∞(x) =
k0

4π‖x‖
∫

Γr

[x̂×M + Z0x̂× (x̂× J)e−jk0r·x̂]dS(r), (12)

where Γr is a surface enclosing the scatter, x̂ := x/|x|, r is the current point on the integration surface
Γr. The vector fields M and J denote surface magnetic and electric currents defined as

M := E × n, J := n×H, (13)

where H := 1
jωµ∇×E is the magnetic field.

3 Numerical examples
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Figure 1: RCS at 1 GHz (HH-polarization).

In this section two numerical examples will be studied.
The first consists of an open pipe where the electromag-
netic back-scatter is computed using FEM (EM3D), MoM
(M-RANDOLPH, which is a apart of the suite of programs
within GEMS, see [3]) and PO (FOPOL). The second ex-
ample is a convergence study of the computed scatter from
an infinitesimal thin PEC disc.

3.1 Open pipe
Here the electromagnetic scattering on an open pipe will
be calculated. The dimensions of the pipe is 36.0× 4.0×
0.065 inches (Length × Diameter × Thickness). The pipe
is considered as a perfect electrical conductor. The mono-static RCS will be estimated in an azimuth
sweep from 0 to 180 degrees, where the x-axis is parallel with the axis of the pipe. The results can be
seen in Figs. 1 to 3 for three different frequencies. At an angle perpendicular to the manifold of the pipe
all three methods agree; however, when the direction of the impinging wave approaches the direction
of the x-axis the error using PO is significant. At lower frequencies MoM agree well with FEM, but at
higher frequencies, where more energy is able to enter the pipe, there are some discrepancies between
the methods.

3.2 PEC disc
In this section the convergence properties of separate and combined polynomial enrichment and mesh
refinement methods are studied.

Pure h-refinement and pure p-enrichment convergence rates are compared with hp-refinement. The
object under investigation is a PEC disc with infinitesimal thickness and radius a = 1. For small
wavenumbers an asymptotic series solution is available. The wave number considered here is ka = 0.5.

In the case with pure h and p refinement/enrichment algebraic convergences are obtained. As can
be seen in Fig. 4, the increase in slope of the convergence rate from using pure p-enrichment instead
of pure h-refinement is approximately 1.7. In the case of hp-refinement we obtain almost exponential
convergence and far better accuracy than with pure h-refinement and p-enrichment.
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Figure 2: RCS at 3 GHz (VV-polarization).

Note that the property of interest here is the l2-norm
of the RCS. The reference solution, denoted by σex, is
obtained using a low frequency analytic series expansion,
see [4], and σfe is the calculated FEM solution. Also note
that the initial mesh has to be designed so that the wave
is resolved, i.e. it has to fulfill the sampling theorem. The
a priori hp-mesh was constructed using three h and one p
refinement in each sequence, i.e. the last hp-refinement,
in Fig. 4, consists of three sequences with three h and one
p in each sequence.
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Figure 3: RCS at 4 GHz (HH-polarization).
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Figure 4: Scattering from a PEC disc, ka = 0.5.
Far-field convergence of the l2-norm of the RCS.

In this paper the electromagnetic scattering was mainly
determined using an hp-adaptive version of the FE-
Method. When considering a problem with existing
singularities it is shown herein, using an infinitesimal thick disc, that the hp-approach is superior to tra-
ditional approaches such as pure h-refinement and p-enrichment. The convergence rate of the calculated
RCS is almost exponential for the hp-approach.
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